Drug-stimulated nucleotide trapping in the human multidrug transporter MDR1. Cooperation of the nucleotide binding domains.
نویسندگان
چکیده
The human multidrug transporter (MDR1 or P-glycoprotein) is an ATP-dependent cellular drug extrusion pump, and its function involves a drug-stimulated, vanadate-inhibited ATPase activity. In the presence of vanadate and MgATP, a nucleotide (ADP) is trapped in MDR1, which alters the drug binding properties of the protein. Here, we demonstrate that the rate of vanadate-dependent nucleotide trapping by MDR1 is significantly stimulated by the transported drug substrates in a concentration-dependent manner closely resembling the drug stimulation of MDR1-ATPase. Non-MDR1 substrates do not modulate, whereas N-ethylmaleimide, a covalent inhibitor of the ATPase activity, eliminates vanadate-dependent nucleotide trapping. A deletion in MDR1 (Delta amino acids 78-97), which alters the substrate stimulation of its ATPase activity, similarly alters the drug dependence of nucleotide trapping. MDR1 variants with mutations of key lysine residues to methionines in the N-terminal or C-terminal nucleotide binding domains (K433M, K1076M, and K433M/K1076M), which bind but do not hydrolyze ATP, do not show nucleotide trapping either with or without the transported drug substrates. These data indicate that vanadate-dependent nucleotide trapping reflects a drug-stimulated partial reaction of ATP hydrolysis by MDR1, which involves the cooperation of the two nucleotide binding domains. The analysis of this drug-dependent partial reaction may significantly help to characterize the substrate recognition and the ATP-dependent transport mechanism of the MDR1 pump protein.
منابع مشابه
FREQUENCY OF C3435 MDR1 AND A6896G CYP3A5 SINGLE NUCLEOTIDE POLYMORPHISM IN AN IRANIAN POPULATION AND COMPARISON WITH OTHER ETHNIC GROUPS
ABSTRACT Background: It is well recognized that different patients respond in different ways to medications. The inter-individual variations are greater than the intera- individual variations, a finding consistent with the notion that inheritance is a determinant of drug responses. The recent identification of genetic polymorphisms in drug-metabolizing enzymes and drug transporters led to the ...
متن کاملRole of glycine-534 and glycine-1179 of human multidrug resistance protein (MDR1) in drug-mediated control of ATP hydrolysis.
The human multidrug resistance protein (MDR1) (P-glycoprotein), a member of the ATP-binding cassette (ABC) family, causes multidrug resistance by an active transport mechanism, which keeps the intracellular level of hydrophobic compounds below a cell-killing threshold. Human MDR1 variants with mutations affecting a conserved glycine residue within the ABC signature of either or both ABC units (...
متن کاملبررسی فراوانی پلی مورفیسم ژنتیکی C3435T ژن MDR1 در یک جمعیت سالم استان مازندران
Background and purpose: The human multidrug resistance gene (MDR1) encodes for P-glycoprotein (P-gp) which is a transmembrane transporter protein acts as an efflux pump for a number of xenobiotics. It plays a protective role for cells against DNA damage caused by toxins and drugs. The wobble C3435T polymorphism at exon 26 has been associated with different expression levels and activities of th...
متن کاملEvaluation the interaction of ABC multidrug transporter MDR1 with thymoquinone: substrate or inhibitor?
Objective(s): Thymoquinone (TQ) has valuable medical properties like anticancer effects. Development of multidrug resistance (MDR) phenotype is one of the most important factors in failure of cancer chemotherapy. The aim of this study was to evaluate the mode of interaction of TQ and MDR1, a major MDR-related protein in gastric cancer drug resistant EPG85-257RDB cells,...
متن کاملNucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric.
LmrCD is a lactococcal, heterodimeric multidrug transporter, which belongs to the ABC superfamily. It consists of two half-transporters, LmrC and LmrD, that are necessary and sufficient for drug extrusion and ATP hydrolysis. LmrCD is asymmetric in terms of the conservation of the functional motifs of the nucleotide-binding domains (NBDs). Important residues of the nucleotide-binding site of Lmr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 17 شماره
صفحات -
تاریخ انتشار 1998